Nº.61 UNIVERSO Dez 2016 | Jan 2017

O Universo, desde o Big Bang, vem se expandindo a partir de um único ponto. A esfera está se expandindo continuamente.
João E. Steiner
8/12/16

Na década de 1920, o astrônomo americano Edwin Hubble procurou estabelecer uma relação entre a distância de uma galáxia e a velocidade com que ela se aproxima e se afasta de nós. A velocidade da galáxia se mede com relativa facilidade, mas a distância requer uma série de trabalhos encadeados e, por isso, é trabalhoso e relativamente impreciso. Após muito trabalho, ele descobriu uma correlação entre a distância e a velocidade das galáxias que ele estava estudando. Quanto maior a distância, com mais velocidade ela se afasta de nós. É a chamada Lei de Hubble. Portanto, as galáxias próximas se afastam lentamente e as galáxias distantes se afastam rapidamente? Como explicar essa lei?

Num primeiro momento, poderíamos pensar que, afinal, estamos no centro do universo, um lugar privilegiado. Todas as galáxias sabem que estamos aqui e por alguma razão fogem de nós. Essa explicação parece pouco copernicana. A essa altura dos acontecimentos, ninguém mais acreditava na centralidade cósmica do homem. Precisamos achar, então, outra explicação.

A outra explicação pode ser facilmente entendida se fizermos uma analogia bidimensional do universo. Costumamos dizer que vivemos num universo de três dimensões espaciais: podemos andar para a frente, para os lados e pular para cima. Além disso, existe a dimensão do tempo. Essas quatro dimensões compõem o espaço-tempo do universo em que vivemos. Poderíamos imaginar outros universos. Do ponto de vista matemático, podemos imaginar, por exemplo, universos bidimensionais. A superfície de uma bola é uma entidade de duas dimensões, assim como o é a superfície de uma mesa. Poderíamos, agora, imaginar a superfície de uma bexiga de aniversário como um universo bidimensional. Sobre a sua superfície poderíamos desenhar galáxias bidimensionais, povoadas por formigas também de duas dimensões. Algumas dessas formigas poderiam ser astrônomas cuja tarefa seria observar outras galáxias, medir suas distâncias e velocidades.

Imaginemos, agora, que alguém sopre na bexiga de tal forma que ela se expanda. O que a formiga-astrônoma vai observar? Que as galáxias próximas se afastam lentamente ao passo que as galáxias distantes se afastam rapidamente do observador. Isto é, a formiga descobriu a Lei de Hubble. Se, por hipótese, em vez de uma bexiga em expansão, ela estivesse se esvaziando, em contração, a formiga verificaria que todas as galáxias se aproximam uma das outras; um efeito contrário ao da Lei de Hubble. Portanto, essa lei mostra que nosso universo está em expansão! Isto é, no futuro ele será maior e no passado foi menor do que ele é hoje. Quanto mais no passado, menor. Até que poderíamos imaginar a bexiga tão pequena que se reduziria a um ponto. A esse ponto inicial, a ideia de que o universo surgiu de uma explosão no passado, chamamos de Big Bang. Desde então, ele está se expandindo, até hoje, e a lei de Hubble é a confirmação disso. Há quanto tempo teria acontecido isso? As indicações mais recentes são de que o Big Bang ocorreu há 13,7 (± 0,2) bilhões de anos[i].

 

Edwin Hubble (1889-1953), ao telescópio Schmidt do Monte Palomar (Califórnia), em 1949.

De fato, trabalhos teóricos do abade belga Georges Lemaitre, de 1927, mostraram que a Teoria da Relatividade Geral de Albert Einstein é compatível com a recessão das Nebulae (como eram então chamadas as galáxias) e ele foi o primeiro a propor que o universo teria surgido de uma explosão, de um “átomo primordial”.

Uma pergunta imediata que poderia nos ocorrer é: para que direção do espaço devemos olhar para enxergarmos onde essa explosão ocorreu? Se o universo está se expandindo, dentro de onde? Ora, no modelo de bexiga – universo de duas dimensões – o Big Bang ocorreu no centro da bexiga, não na sua superfície. O espaço é a superfície. O interior é o passado, e o exterior, o futuro. O centro, a origem do tempo. Portanto, a explosão não ocorreu no espaço, mas no início do tempo, e o próprio espaço surgiu nessa singularidade temporal. Esse exemplo simples nos mostra como o modelo bidimensional pode nos ilustrar, de forma intuitiva, porém confiável, questões fundamentais de cosmologia; agregar uma terceira dimensão é apenas uma questão de habilidade matemática!

Podemos, agora, voltar à reflexão de que olhar para longe é ver o passado. Seria possível observar o universo evoluir? Essa ideia parece interessante; quanto mais longe olhamos, mais vemos um universo mais jovem. Poderíamos, então, observar a época em que as galáxias nasceram? Sim, basta que tenhamos tecnologia para isso. Basta que tenhamos instrumentos que nos permitam observar o universo a 12 bilhões de anos-luz de distância. Essa tecnologia já é disponível com os novos e grandes telescópios. Com isso é possível observar quando, como e por que as galáxias nasceram – essa é uma das áreas mais palpitantes da ciência contemporânea.

Outra pergunta que naturalmente se faz é: o que foi o instante zero e o que havia antes? A teoria da relatividade prevê que no instante zero a densidade teria sido infinita. Para tratar essa situação, é necessária uma teoria de gravitação quântica, que ainda não existe, e, portanto, essa questão não é passível de tratamento científico até este momento. Entender essa fase da história do universo é um dos maiores problemas não-resolvidos da física contemporânea.

As confirmações do Big Bang

No final dos anos de 1940, o astrônomo George Gamow sugeriu que a explosão inicial poderia ter deixado resquícios observáveis até hoje. Ele pensou que um universo tão compacto e quente teria emitido muita luz. Com a expansão, a temperatura característica dessa luz teria abaixado. Segundo cálculos simples, hoje ela talvez pudesse ser observada na radiação de microondas, com uma temperatura de cerca de 5 graus Kelvin. Em 1965, dois engenheiros, Arno Penzias e Robert Wilson, procuravam a origem de um ruído eletro- magnético que estava atrapalhando as radio- propagações de interesse para um sistema de telecomunicações. Descobriram que a radiação vinha de todas as direções para as quais apontassem sua antena. Mediram a temperatura dessa radiação; eles encontraram um valor para a temperatura não muito diferente do previsto, de 2,7 graus Kelvin (próximo ao zero absoluto). Era a confirmação da teoria do Big Bang; Penzias e Wilson receberam o Prêmio Nobel de Física em 1978.

Na ciência, quando se faz uma previsão específica baseada em uma teoria, e essa previsão é confirmada, a teoria em questão sai fortalecida. Foi o que aconteceu com o episódio da radiação cósmica de fundo. Ponto para a teoria do Big Bang, que passou a ter supremacia absoluta sobre sua teoria rival, a teoria do estado estacionário, segundo a qual o universo é o que sempre foi.

Uma galáxia espiral que lembra bastante a galáxia na qual vivemos. Cada galáxia dessas tem cerca de 100 mil anos-luz de diâmetro e é composta por cerca de 100 bilhões de estrelas. As manchas mais brilhantes que acompanham os braços espirais são os berçários de formação estelar. As estrelas de maior massa são azuis e vivem pouco, ao passo que as de menor massa são vermelhas e são mais longevas.
 
Mas essa não foi a única confirmação da teoria. O Big Bang também prevê que o elemento hélio se formou nos primeiros três minutos após a explosão. Que cerca de um quarto da matéria do universo se formou desse elemento, e três quartos sob forma de hidrogênio. Quando se conseguiu medir essa abundância primordial do hélio, o valor encontrado confirmou com precisão o previsto[ii].

Inflação, matéria escura e energia escura

Mesmo com as evidências observacionais em favor do Big Bang, por muito tempo se discutiu a viabilidade dessa teoria. Diversos problemas teóricos dificultavam uma descrição precisa das observações, até que, em 1982, o físico americano Alan Guth propôs uma solução que, de início, pareceu insólita para muitos: a teoria do Big Bang inflacionário. Por essa ideia, o universo teria passado por uma fase de expansão extraordinária. Quando a idade do universo era de um trilionésimo de trilionésimo de trilionésimo de segundo (sic), o universo expandiu-se subitamente de um fator gigantesco (esse fator é o número 1 seguido de 50 zeros!). Com esse modelo, alguns problemas teóricos desapareceram. Naturalmente, uma proposta tão insólita careceria de evidências lastreadas na realidade. Essas não tardaram a aparecer. A inflação propõe que as galáxias teriam sido formadas a partir de sementes geradas no período inflacionário. Flutuações quânticas correspondentes ao Princípio da Incerteza de Heisenberg, amplificadas pelo fator da inflação, teriam dado origem às galáxias. Essa ideia seria testável, pois prevê a existência de pequenas flutuações na temperatura da radiação cósmica de fundo. Muito se pesquisou a esse respeito até que, em 1992, o satélite Cobe determinou não só que essas flutuações existem, mas que elas se comportam exatamente de acordo com o previsto pela teoria inflacionária. Por esse trabalho os pesquisadores norte-americanos George Smoot e John Mather receberam o Prêmio Nobel de Física em 2006.

O que teria causado a inflação? Imagina-se que poderia ter ocorrido pelo que se chama de transição de fase. Por exemplo, a transformação da água em gelo (transição líquido-sólido) é uma transição de fase que libera energia latente da água. Da mesma forma, uma transição de fase no Big Bang teria liberado energia latente, responsável pela expansão súbita do universo.

Com frequência as galáxias se encontram em famílias, chamadas de aglomerados. O aglomerado de Virgo tem 800 galáxias; o de Coma, duas mil. Em 1933, o astrônomo suíço Fritz Zwicky mediu a massa do aglomerado de galáxias de Coma e verificou que esse valor era de cerca de 400 vezes maior do que a soma das massas das suas galáxias individuais. Portanto, havia uma “matéria es- cura”, responsável por manter o aglomerado coeso. Por muitas décadas essa pesquisa não teve muito crédito. Na década de 1960, no entanto, medidas feitas em muitas outras galáxias mostraram que também aí havia uma misteriosa matéria escura. Na Via-Láctea ela corresponde a dez vezes a massa visível sob forma de estrelas ou gás. Para toda parte que se olha, essa misteriosa matéria parece estar presente. Mas o que é essa massa misteriosa? Muito já se especulou sobre sua natureza, mas ainda não se encontrou nenhuma resposta convincente. Apenas sabemos que a natureza dela é diferente de toda a matéria que conhecemos.

Qual é o futuro da expansão do universo? Isso depende da quantidade de massa contida nele. Se for muito grande, ela fará o universo desacelerar até que a velocidade se anule e depois se contrairá. É o chamado modelo de universo fechado. Se a massa for pequena, ela não será o suficiente para zerar a velocidade e o universo irá se expandir para sempre. Chamamos isso de universo aberto. A fronteira dos dois é o universo plano[iii].

Tentativas para determinar qual modelo corresponde à realidade fizeram que muitas pesquisas fossem conduzidas ao longo de décadas. Em 1998, no fechar do século e do milênio, descobriu-se que a expansão do universo não está sendo desacelerado, mas acelerado. Isto é, quanto mais o tempo passa, com maior velocidade as galáxias se afastam umas das outras. Isso foi uma descoberta extraordinária e desconcertante, pois sugere que existe uma energia que atua no sentido contrário ao efeito de gravidade. A essa energia se chamou de “energia escura”. Ela é totalmente distinta da matéria escura; a matéria escura possui gravidade; a energia escura, não. Ao contrário, provoca repulsão.

As medidas mais recentes (do ano de 2006) mostram que a matéria normal corresponde a 4%, a matéria escura a 22%, e a energia escura a 74% de toda a massa-energia do universo. Como apenas conhecemos a matéria comum, desconhecemos totalmente a natureza de 96% do universo. Em outras palavras, o que conhecemos corresponde à ponta do iceberg apenas[iv].

Além…

Quanto mais pesquisamos, mais avançamos a fronteira do conhecimento da natureza. Quanto mais a tecnologia avança, mais precisas são as medidas e as informações, e mais sofisticadas e detalhadas as teorias. Afinal, se a mecânica de Newton (Isaac Newton, 1642-1727, físico e matemático inglês) parece funcionar tão bem para a vida cotidiana, por que precisamos da complexa Mecânica Quântica ou da Teoria da Relatividade? Porque a tecnologia evoluiu e as medi- das mais precisas que ela proporciona só são explicadas por essas teorias. Assim como na física, o diálogo entre o desenvolvimento tecnológico e os avanços científicos sempre esteve presente na história da astronomia de forma muito fertilizadora para ambas.

Somente acreditamos na Mecânica Quântica porque ela funciona, não porque ela pareça lógica. Mesmo assim, estima-se que, hoje, cerca de 50% da economia mundial estejam, de alguma forma, vinculadas à Mecânica Quântica. Sem ela não existiria a eletrônica dos computadores, dos televisores, dos telefones, das máquinas fabris etc. A Teoria da Inflação Cósmica também funciona, mesmo que pareça insólita. Ela é útil, na medida em que nos permite calcular características fundamentais do universo. Por que não utilizá-la? Não foi por essa razão que os navegadores adotaram a teoria de Copérnico?

O Big Bang explica tudo?

Afinal, seria o Big Bang uma teoria definitiva? Vejamos se essa é uma hipótese razoável. Ao longo da história, vimos que a ideia de universo evoluiu muito. Passou por diversos estágios, que podem ser caracterizados como teorias cosmológicas. Terra plana, modelo geocêntrico, heliocêntrico, galactocêntrico, Big Bang, Big Bang inflacionário…. Cada modelo explica o que era conhecido na época e o que as medidas de então podiam confirmar. Não se pode dizer que essas teorias estavam erradas. Seria melhor afirmar que eram incompletas. Afinal, para nossa experiência diária, o modelo de terra plana não é ruim. A terra é redonda e, além do mais, gira em torno do Sol, e assim por diante. A descoberta de que o universo – tudo o que existe – evolui de forma que possa ser racional- mente analisado parece ser surpreendente. Mais surpreendente, o fato de que podemos demonstrar que ele teve uma origem. As leis que desenvolvemos no nosso pequeno planeta aplicam-se ao universo todo. Não há evidência de que haja qualquer discrepância mensurável.

Isso encerra a história? Tudo nos leva a crer que não. Se somos copernicanos no que se refere ao espaço, aprendemos também a ser copernicanos no que se refere ao tempo e, portanto, não vivemos num momento especial. O próprio Big Bang deve ser objeto de racionalização, de detalhamentos. Ao primeiro capítulo já assistimos: o Big Bang não ocorreu de forma qualquer; ele foi inflacionário. Quantas etapas mais surgirão na aventura humana de decifrar a natureza do universo em que vivemos?

A concepção de universo em meados do século XVII havia já incorporado as noções de espaço e tempo de Newton. O universo parecia um espaço-tempo estático e infinito, muito distinto daquele em que o destino humano e os deuses estavam intimamente ligados à concepção de mundo. O filósofo francês Blaise Pascal expressou assim o sentimento: “Tragado pela imensidão infinita dos espaços, dos quais não sei nada e o qual não sabe nada de mim, estou apavorado… O eterno silêncio destes espaços infinitos me alarma”.

Afinal, estamos tão sós quanto imaginou Pascal? A natureza e o destino humanos estão totalmente desconectados da estrutura cósmica maior? Hoje sabemos que cada estrela pode conter um sistema solar e que cada galáxia possui, em média, cerca de 100 bilhões de estrelas. É legítimo supor que o número de planetas com condições semelhantes ao do planeta Terra é imenso, só considerando a nossa galáxia. Devemos lembrar ainda que o número de galáxias observáveis dentro do horizonte cósmico acessível é de 100 bilhões. Fica claro, pois, que existe um número enorme de planetas com condições nas quais a vida possa ter surgido e se desenvolvido. Isso não significa que a vida humana como a nossa seja comum. Não só porque ela pode ter assumido a sua feição fortuitamente, mas também porque ela é certamente efêmera, se considerada na escala de tempo cósmica. Exatamente por esse caráter efêmero e por causa das distâncias envolvidas, dificilmente duas civilizações de grau de desenvolvimento semelhante poderiam entrar em contato entre si, mesmo que existam simultaneamente em estrelas ou galáxias separadas.

Uma outra conexão que nos vincula com as estrelas diz respeito aos elementos químicos, indispensáveis para manter nossa estrutura física. Cada átomo de oxigênio que inspiramos, assim como cada átomo de cálcio que está nos nossos ossos ou de ferro e de carbono da nossa musculatura tiveram uma origem muito especifica, cuja história conhecemos. Apenas o hidrogênio e o hélio (além do deutério e parte do lítio) foram formados no Big Bang; os elementos químicos mais pesados foram todos sintetizados no centro das estrelas. Com a morte dessas, o gás enriquecido desses elementos pesados foi lançado ao espaço, apenas para se juntar aos restos de milhares de outras estrelas e formar uma nova geração de corpos celestes. O Sol já é uma estrela de terceira geração, e graças a isso a composição química do sistema solar é rica o suficiente para formar a vida como a conhecemos.

A cosmologia científica, ao contrário das cosmologias tradicionais, não tenta ligar a história do cosmos a como os homens devem se comportar (diferentemente do que, ainda hoje, os adeptos da astrologia nos propõem). É papel dos cientistas, artistas, filósofos e outras pessoas criativas entendê-la e expressar o sentido humano nela. O pleno impacto dessa cosmovisão sobre a cultura humana só se dará quando a compreensão da nossa realidade física for plenamente entendida pelo cidadão comum.

Enquanto isso, a missão da astronomia é de nos dizer onde estamos, de onde viemos e para onde vamos. E, pelo visto, essa missão parece não ter fim.

Referências bibliográficas

DAMINELI, A. Hubble: a expansão do universo. São Paulo: Odysseus, 2003. FERRIS, T. O despertar da Via-Láctea. Rio de Janeiro: Campus, 1990. GLEISER, M. A dança do universo. São Paulo: Companhia das Letras, 2000.

GUTH, A. The Inflationary Universe. Massachusetts: Addison-Wesley, Reading, 1997.

KEPLER, S. O.; SARAIVA, M. F. Astronomia e astrofísica. Porto Alegre: Editora da

UFRGS, 2000. [Também disponível na internet: astro.if.ufrgs.br] NORTH, J. Astronomy and Cosmology. Glasgow: Fontana Press, 1994.





[i] Como teoria rival do Big Bang, persistiu por muito tempo a teoria do estado estacionário. Essa teoria se baseia no Princípio Cosmológico Perfeito, segundo o qual o uni- verso é homogêneo, isotrópico e constante no tempo. Esse modelo era bem-visto pelos físicos, principalmente porque eliminava os problemas de ter havido uma origem no tempo. Esse princípio é incompatível com as observações que mostram que o universo evolui com o tempo.

[ii] Existem outras evidências em suporte à teoria do Big Bang. Se o universo não fosse finito no tempo, o céu noturno não seria escuro. Além disso, galáxias evoluem com o tempo, tornando-se mais velhas, com mais elementos químicos pesados. Isso é confirmado diretamente pelas observações. Quanto mais longe observamos no universo, mais jovens (menos evoluídas) são as galáxias.

[iii] Se o universo fosse fechado, ele voltaria a se contrair, acabando em um Big Crunch. A partir daí, poderia haver um novo Big Bang e assim por diante, o que implicaria um universo cíclico – ideia comum a várias visões cosmológicas antigas. A teoria da inflação, no entanto, é incompatível com a ideia de universo fechado.

[iv] As pesquisas do Big Bang motivaram experimentos em laboratório, levando à descoberta de novas partículas em física. Ao contrário do que acontecia no século XX, quando as revoluções da física eram usadas para progredir no entendimento do universo, hoje as pesquisas da cosmologia indicam para a física onde ela deve progredir para o entendimento do mundo material.

 

Este texto é a segunda parte de um artigo publicado originalmente na revista Estudos Avançados 20 (58), 2006. A reprodução foi autorizada pelo autor e pelo editor.  A primeira parte está nesse link